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We elaborate in some detail on a new phase space approach to complexity, due 
to Y.-C. Zhang. We show in particular that the connection between maximal 
complexity and power law noise or correlations can be derived from a simple 
variational principle. For a 1D signal we lind 1If noise, in accordance with 
Zhang. 
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1. i N T R O D U C T I O N  

The emergent properties in many natural and artificial structures, that is, 
properties not present in or deducible from the fundamental laws of inter- 
action between the individual constituents, is a fascinating aspect of the 
behavior of interacting systems composed of many parts. In physics the 
classical example is that of second-order phase transitions in equilibrium 
systems, (2'3) where the system in question develops long-range spatiotem- 
poral correlations. More recently, the case of fractal behavior in diffusion- 
limited aggregation (DLA) (4) and spatiotemporal long-range correlations 
in driven self-organized systems ~5) are also examples of emergent properties 
in irreversible and driven systems. In computer science and physics 
modeling we also mention the asymptotic behavior of cellular automata as 
a case of emergent properties, m) 

In recent years there have been several attempts to introduce a 
quantitative measure for the emergent complex behavior of collective 
systems.(6 8,11, 13,14) A measure of complexity K providing a global charac- 
terization distinguishing complex behavior, much like the pressure P or 
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temperature T, is a global characteristic for thermodynamic equilibrium 
systems. In analogy with the entropy, which takes its largest value for the 
equilibrium system subject to constraints, the measure K should thus 
assume its extremal, say largest, value for systems which are in an inter- 
mediate state between perfect order and complete disorder and which also 
exhibit long-range correlations in space and time. We thus expect an 
appropriate complexity measure to be maximal at the critical point of a 
second-order phase transition and in the case of self-organized critical 
behavior, (5) to mention two cases. 

For  equilibrium systems the concept of entropy is of central impor- 
tance (3) and characterizes the "degree of order" in the system. Subjectively, 
the "degree of order" is, however, not the same as "degree of complexity" 
and the entropy does not distinguish the most complex state Of the system 
and as such is not appropriate as a complexity measure. In fact, as alluded 
to, it seems that the somewhat elusive notion of complexity is partly 
subjective and related to the concept of meaningJ m Also, as we shall 
discuss below, the perceived complexity of a collective system must be 
related to the measuring procedure and the degree of resolution. 

More specifically, let us briefly comment on two recent approaches to 
complexity: Computational or algebraic complexity is a measure defined 
for a specific system or realization as the length of the minimal algorithm 
or code which leads to an exact copy of the structure when implemented 
on a computer. (11) Computational complexity is associated with a specific 
"string" or realization and is therefore not very suitable in a physics 
context, where we usually deal with an ensemble of systems and wish to 
introduce the notion of complexity as a probabilistic measure. 

A complexity measure has also been introduced for general hierarchi- 
cal discrete structures (6'7) with the important property of having its largest 
value for systems intermediate between the completely ordered and com- 
pletely disordered states. The limitation of "hierarchical" complexity is, 
however, that it is a rather formal construct based on the generic tree 
structure of a hierarchical system and does not refer in any direct way to 
the spatiotemporal characteristics of the system under consideration. 

In a recent paper Zhang (1) has proposed a new definition of com- 
plexity, here called phase space complexity, which in our view has certain 
advantages as compared with previous definitions. The complexity measure 
is based on a phase space approach and is derived from a scale-dependent 
entropy or information content, drawing from Shannon's definition. (3) 

Unlike computational or hierarchical complexity, the new definition 
of phase space complexity applies to an ensemble of systems. Since it is 
defined in terms of the probability distribution; it is thus more adaptable 
to a physical situation. 
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As mentioned above, the entropy is not an appropriate measure of the 
complexity of a system. A completely ordered system with a small entropy 
or a completely disordered system with maximum entropy is the least 
complex. Like the entropy, the phase space complexity is an extensive 
quantity; on the other hand, it is defined as a definite weighted sum of 
scale-dependent entropies. 

The perceived complexity of a system is intimately related to the 
degree of resolution by a measuring procedure of the spatiotemporal 
correlations. Clearly, on a sufficiently coarse-grained level the correlations 
are absent and the system "loses" its complexity. The phase space com- 
plexity being defined in terms of resolution or scale-dependent entropies or 
information contents attempts to capture precisely this feature. 

In the present paper we elaborate in some detail on this new approach 
to complexity. In Section 2 we discuss systems or rather signals and their 
associated probability distributions. In Section 3 we consider the concepts 
of entropy and define the new phase space complexity. We remark that 
given the choice of a complexity measure based on the scale-dependent 
entropies, the requirement of an extensive character essentially dictates its 
form. In Section 4 we carry out the coarse-graining procedure and intro- 
duce a reduction formula in order to evaluate conveniently the complexity 
for general probability distributions. In Section 5 we limit the discussion to 
signals or systems with a Gaussian probability distribution and compute 
explicitly the phase space complexity. In Section 6 we show that the 
extremal value of the complexity for Gaussian probability distributions can 
be inferred from a simple variational principle sibject to the constraint that 
the power of the signal is kept constant. A maximal complexity generally 
corresponds to long-range correlations in the system or signal indicating a 
complex behavior. For a one-dimensional signal we find in particular, in 
agreement with the findings in ref. 1, that the correlations exhibit a 1If 
behavior for maximal complexity. In Section 7 we present a summary and 
a conclusion. 

Before we embark on the formal analysis we wish to remark that the 
presence of long-range correlations and of I / f  behavior in particular follow- 
ing from a maximal complexity cannot be considered as an independent 
explanation or derivation of the ubiquitous 1If noise in natural systems 
which has puzzled researchers for a long time, (5'16) but presumably is a 
feature of the way we have defined the phase space complexity, i.e., as a 
weighted sum of scale-dependent entropies. That there should be a connec- 
tion between the somewhat ambiguous notion of complexity and a natural 
phenomenon such as 1If noise in interacting systems is, of course, highly 
speculative. In the present paper our aim is simply to explain and derive 
some of the properties of the complexity measure introduced in ref. 1. 
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2. S IGNALS A N D  PROBABILITY D ISTRIBUTIONS 

The properties of a physical many-body system manifest themselves by 
the "signals" emitted by the system. For  instance, the "signature" of a 
magnetic spin system in thermal equilibrium is shown in the fluctuation 
spectrum of the magnetization. We shall here understand a signal in the 
broadest sense as either a time series s(t) or a spatial distribution s(x), 
where x is a d-dimensional vector. In this extended sense a two-dimensional 
spatial morphology also represents a physical "signal." Generally, we may 
also consider a signal with several components s i, i = 1 ..... N; in the present 
context we shall, however, limit ourselves to a one-component signal. 

The signal s emitted by a system is characterized by a probability 
distribution P(s). More specifically, considering a discrete 1D signal s,, 
1 < i < N, with continuous amplitude, the distribution is 

P({si}, 1 < i < S )  (2.1) 
properly normalized, i.e., 

N 

I ,=91 dsiP({s,}):l (2.2) 

In Fig. 1 we show a 1D signal representing, for instance, a time series. 
The dashed line is just a guide to the eye indicating the random erratic 
character of the signal. In Fig. 2 we show an example of a 2D signal which 
could, for instance, represent a percolating cluster. 

For  equilibrium systems the probability distribution is given by the 
canonical ensemble, ~3) 

1 
P({si}) = ~ e x p [ -  fiE({s,})] (2.3) 

where fl is the inverse temperature of the heat bath and Z is the partition 
function 

N 

Z=f l~ exp[-fiE({si})] (2.4) 
i = l  

Si 

Fig. 1. 
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A time series of an arbitrary random signal. We assume that the time variable is 
discrete. The dashed line is a guide to the eye. 
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Fig. 2. 

Sl �9 �9 �9 Q �9 | 

�9 �9 �9 

�9 �9 �9 �9 �9 �9 | �9 

�9 �9 �9 �9 �9 �9 tJ 

�9 �9 | �9 �9 O 

�9 �9 ~ �9 �9 �9 �9 

b 22 

~ 1 2  �9 �9 
I I ~ i  
1 N 

A 2D spatial morphology or "signal" on a two-dimensional square lattice. The signal 
could represent a percolating cluster. 

E({si}) is the energy or Hamiltonian of the signal or configuration {si}. 
Strictly speaking, the distribution in Eqs. (2.3) and (2.4) applies only to 
time-independent signals or configurations. For time-dependent signals 
{si(t)} we must invoke an appropriate dynamical description of, for 
example, the Langevin type: 

dsi(t) r6F4{si}) +~,(t) (2.5a) 
dt (Ssi(t) 

(r l i ( t )  rlj(t') ) = 2--F o 6ij6(t - t ' )  (2.5b) 
p 

where the form of the white noise r/~(t) ensures the coupling to a thermal 
heat bath. 

Generally, the form of P({si}) is not known for driven systems. For 
later purposes we shall consider a simple Gaussian form for P({si}) applied 
to a 1D signal: 

P c  .... ({si}) = Z ~  . . . .  - 5 ~ s i g ~  (2.6a) 
6 

/N ) ZG' . . . .  ~ H dsiexp - ~ s i g ~ l s j  (2.6b) 
i = 1  " 

The signal is here alone characterized by the correlation function gij. 

8 2 2 / 6 9 / I - 2 - 2 7  
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3. E N T R O P Y  A N D  C O M P L E X I T Y  

The traditional measure of "the amount of uncertainty" represented by 
the probability distribution P({s~}) for the signal s~ is given by Shannon's 
information-theoretic entropy (in units of kB)(3): 

N 

S=-f  I~ dsiP({si})l~ (3.1) 
i = l  

For a completely disordered signal P({si})=const  the amount of uncer- 
tainty is maximal and the entropy S attains its largest value; the only con- 
straint is the normalization condition for P in Eq. (2.2). Correspondingly, 
for a well-defined signal at a given time instant or space point s = si we 
have P(s=s~)= 1, and P = 0  otherwise; the amount of uncertainty is 
minimal and the entropy S assumes its smallest value, S = 0. 

From our previous remarks it follows that the entropy is not a good 
measure of the complexity of a signal. In a certain sense the completely 
deterministic signal with a small entropy or the completely disordered 
signal with maximum entropy is the least complex. An appropriate defini- 
tion of complexity must be in accordance with our subjective under- 
standing of complex behavior and is clearly associated with the presence of 
correlations in the signal. For a system in thermal equilibrium with P given 
by Eq. (2.3) the complexity depends on the parameter/~ (the inverse tem- 
perature) and we anticipate that an appropriate definition of complexity 
attains its largest value at the critical point in cases where the system 
described by the Hamiltonian E({s;}) undergoes a second-order phase 
transition, the critical point with its long-range spatial and temporal 
correlations giving rise to a maximally complex signal. 

As pointed out by Zhang, ~1) the information content and thereby the 
ensuing complexity of a signal must be related to the scale of resolution 
be it in time or space, and is thus intimitely related to the measuring 
procedure. This is clearly how the "subjective" element enters in an 
appropriate definition of complexity. 

In order to take into account the way the entropy or information 
content depends on the scale of resolution, it is natural to introduce a 
coarse-grained signal ~1~ depending on a scale parameter ~. For a 1D discrete 
signal s~, 1 < i < N, the scale parameter r extends between 1 and N; ~ = 1 
corresponds to the original signal measured with maximum resolution and 

-= N represents the maximally coarse-grained signal. At each level of 
coarse graining we can define a corresponding entropy S(r), where by 
construction S(1)= S and S(N),~0. Since the dimensionless scale factor 
applies to the linear extent of the signal, it follows from the extensive 
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character of the entropy that S ( r ) ~  (N/T) d for a general d-dimensional 
signal. 

As a measure of the complexity K of a d-dimensional signal the 
following form is proposed(I): 

N 

K =  f dr 27d-1S(27 ) (3.2) 
1 

which samples in a uniform way over the scale-dependent entropies. This 
definition of K has the virtue of having the same dimension as the entropy 
and of being extensive; K is, however, not additive, in contrast to S. 

4. COARSE G R A I N I N G  A N D  REDUCTION F O R M U L A  

More specifically, let us consider a one-dimensional discrete signal 
{slll}, 1 < i <  N, characterized by the normalized probability distribution 
p(1)({S(1)}, 1 < i <  N). A coarse graining of the signal determined by the 
scale factor ~ is now achieved by defining the "block" variables, i.e., a mean 
value of sl 1) over a scale ~, 

lz 

SlZ) =--1 ~ ~i~" (.1), 1 <l< N- (4.1) 
27 i=(l-- l )z+ l 27 

In Fig. 3 we indicate how the coarse graining is performed. 
The original signal is characterized by the distribution p(l~ and our 

first aim is now to find the probability distribution for the coarse-grained 
signal {s~)}, 1<l<N/27, i.e., P(~)({sl~)}, 1<l<N/27). This task is most 
easily carried out by deriving a simple reduction formula expressing P(') in 
terms of p(1) .  

Integrating over the variables to be coarse grained, we obtain in a 
straightforward manner 

(1) (1) (1) 1 =3 ds~ P ({s~ }) 6 - ~ s} ~) (4.2) 
i = 1  = 27 i=( l - - l ) z+t  

I St 

7~ ~ ~.~ 

f 
1 

~4) the Fig. 3. The  coarse-gra in ing procedure.  Here  sl 1~ is the original signal for r = t and  s, 
coarse-gra ined signal  co r respond ing  to a scale factor ~ = 4. 
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The coarse-grained or scale-dependent entropy S(r) is now evaluated 
according to Eq. (3.1), i.e., 

N/~ 

S(r) = - f  ~I dsl ~) P(~)({sl~)})log P(~)({sl')}) (4.3) 
i = 1  

and the complexity K from Eq.(3.2) for d = l .  We notice that the 
complexity K depends on (a) the initial distribution P({sll)}) and (b) the 
coarse-graining transformation. 

It is useful to express the reduction formula in Eq. (4.2) in terms of the 
characteristic functions or generators for the probability distributions P(~) 
and P(~). We have (~s) 

Q(~)({ki}, 1 <i<N/r) 
N/z 

= f l-I ds~exp(ik~sl~))P(~)({sl~)}, l<i<N/z)  (4.4) 
i = 1  

By inserting Eq. (4.4) in Eq. (4.2), it is easy to verify that the reduction 
formula now takes the more transparent form 

Q(')({ki}, l<i<N/v)=Q(1)({{k]~}~}, l<i<N/~) (4.5) 

where {k]~}~ indicates ~ consecutive variables in Q(1) taking the same 
value k]r. For ~ = 2 and N = 4 we have, for instance, 

Q ( 2 ) ( k l ,  k 2 ) =  Q ( 1 ) ( k l / 2  , kl/2, k2/2, k2/2) (4.6) 

The reduction formula in Eq. (4.5) is quite general and can easily be 
generalized to the case of a d-dimensional signal. Provided we can find the 
characteristic function Q(1) for a given distribution P(1) and, furthermore, 
recover P~) from QI~), the procedure for evaluating S(r) and finally the 
complexity K is straightforward. 

5. G A U S S I A N  CASE 

In the Gaussian case the characteristic function Q(l)({ki}) takes a 
particularly simple form. Using Eqs. (2.6a)-(2.6b) and Eq. (4.4) and 
"completing the square" in the exponent, we obtain a simple functional 
Gaussian integral yielding 

Q~I) t{ki}, l< i<N)=exp( - �89162  Gauss~ ,. 
q 

(5.1) 
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The coarse-graining procedure is now carried out by using the reduction 
formula in Eq. (4.5). We obtain for Q(~)({ki}), 

r~(~) ~:k~ l < i < N ) = e x p  ~ ! ? )  (5.2) - ~ G a u s s t (  i J ,  - - 2  ~ k,g v 
lj 

where the coarse-grained correlation function e!9 is given by o U  

u ~5 E E ~; ,~,, _(1) 1 < i , j <  N z (5.3) 
r e - - ( i - -  1 ) z+  i n = ( j - - l ) v +  1 

The matrix e!?) is thus constructed by dividing the matrix g~!) into blocks c~lj 

of size r by v and defining ~,!9 as (l /r)  2 times the sum of matrix elements o t j  

in the block with entries ( i - 1 ) z  + 1 to iv and ( j - 1 ) r  + 1 to jz. Since the 
characteristic function in the Gaussian case is covariant under coarse 
graining, it is an easy task to derive the probability distribution P(~) for the 
coarse-grained signal, 

l I 1  u/~ ] P(~)({s~~ = ~-2U exp -- ~ Z si(')'tgu(~)'-l) s: (5.4a) 
U 

= - s~ ( g u )  sr ~ (5.4b) Z(~) 1-[ dsiexp 5 ~ (~) (~) -1 
i = l  O" 

We note that the probability distribution P(~) is covariant under coarse 
graining; this is, of course, a special feature of the Gaussian distribution. 

For stationary time signals or spatially homogeneous morphologies 
the correlation function ~!~) only depends on i - j  and a further analysis is o t j  

facilitated by a Fourier spectral decomposition. (1) Introducing the Fourier 
transforms 

s(~)= ~ exp(ikl) s(T)(k) (5.5a) 
k 

g(,~=~ ~ e x p [ i k ( m - n ) ]  g(*)(k) (5.5b) 

and 

(z )  1 T (gin,) = ~  exp[ik(m-n)]  g(~l(k) - t  

where k = 2~nz/N and n = 1 ..... N/r, we obtain, 
s(~)(k)* = s(~)( - k), 

noting 

(5.5c) 

that 
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1 1 -1] 
P / ~ ' - ~ 5  exp I -  ~ ~ ]s(~'(p)k 2 g'~)(p) (5.6a) 

1 g( , ) (p)- l ]  (5.6b1 

The relationship between the correlation functions g~) and g(l) at different 
levels of coarse graining or resolution is now given by 

1 [ sin(k/Z) 12 g,,) 
g~'(k) = ~ L ~ )  j (~) (5.7) 

For the Gaussian distribution in Eqs. (5.6a) (5.6b) the entropy S(v) takes 
a simple form. Using Eq. (4.3), we find 

S(r) = �89 ~ {1 + log[2~g(~/(k)] } (5.8) 
k 

which in conjunction with Eq. (5.7) for gl~)(k) defines the entropy or infor- 
mation content of a Gaussian signal with correlation function g(1)(k) on a 
resolution level characterized by r. A scale factor r = 1 corresponds to a 
complete resolution of the original signal; r = N to no resolution at all. 

In the long-wavelength or low-frequency limit k --* 0, depending on the 
nature of the signal, we can approximate the expression for g(~)(k) in 
Eq. (5.7), 

g(*)(k) < (l/r) g(1)(k/*) (5.9) 

in accordance with ref. 1. We note that the coarse graining scales both the 
amplitude of g and its range. In this approximation the entropy takes the 
simple form 

S(~) = (1 + log 2 ~ - l o g  r) + ~ log g(l) (5.10) 

and we find for the complexity, using Eq. (3.2) in the case d =  1, 

1 i x ( ! )  K=~NlogN(l+logZrc-logN)+ dr Y' log g (1) (5.11) 
1 k 

The generalization of the above expressions to the d-dimensional case 
is straightforward. For a d-dimensional signal s] ~), 1 = (ll, 12,..., la), we find 

g(~)(k)= 1 ~ [sin(ki/2)12gO) 
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where k = (kl, k2,..., kd) is the wavevector of the Fourier resolutions of sl ~), 
g(') and ,,(T)-I i.e., 

n a n ,  ~ m n  

sIT)= (r/N) d/2 ~ exp(iki) s(~)(k) 
k 

etc. Correspondingly, we have for the probability distribution 

- Z(~) exp - ~ k Is('(k)l 2 g(~>(k) 1 (5.13a) 

[1 1 Z('I= f 1-[ ds'~)(k) exp - 2 ~k Is(~)(k)]2 g(T)(k)-~ 
k 

(5.13b) 

for the entropy 

S(z) = ~  ( 1 + l o g  2 ~ -  dlog z ) + ~  logg  ~ (5.14) 

and for the complexity 

K=~NalogN(l+log2rc-dlogN)+jl dzr d ~ l o g g  (1) 
k 

(5.15) 

6. V A R I A T I O N A L  PRINCIPLE A N D  1If NOISE 

In the Gaussian case the complexity depends on the correlations in the 
original signal as characterized by g(1). In order to compare Gaussian 
signals with different correlations, it is convenient to consider the mean 
power of the signal as a "common measuring stick"(1); in other words, we 
attempt to compare the complexity of Gaussian signals with different 
correlations but with the same "energy content. ''(11 

The average power of the signal sl 1/is given by 

1 2) (6.1) 

Using the distribution in Eqs. (5.13a)-(5.13b), we obtain in the Gaussian 
case 

g,l,(kt (6.21 
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In the one-dimensional case it has been shown, t~) using the Kullback 
inequality, ~2) that the complexity K, subject to a constraint of fixed power 
W, takes the maximal value Km,, for the case of 1If noise correlations in 
the signal, i.e., g(1)(k)-~ 1/k for K =  Kma x. Here we wish to investigate the 
extremal properties of K using a standard variational principle/3~ First we 
note that by successively exchanging the sum over wavenumbers k and the 
integration over the scale parameter z in Eq. (5.15) we can perform the z 
integration explicitly. Using the approximation 

N/m N/ 'r  N N / n  @ ( N / m  
dz ~, ~- ~ [ dz+ /~ ! & (6.3) 

~1 n = l  n=m ~1 n ~ l  ~1 

we obtain in d = 1 

1 K=-~NlogN(l+log2~-logN)+~ - 1  log g(1)(k) (6.4) 

in accordance with ref. 1. For d =  2, applying Eq. (6.3) twice, we have 

1 
K =  ~ N 2 log N(1 + log 2re - 2 log N) 

1 1] log u 

1 [(21r']2 1 + ~  ~ ~ - 1 log g(1)(k) (6.5) 
kl k2<:kl L \ k , J  

In the same way we can derive expressions for K for d > 2. However, owing 
to the branching in exchanging the k-sums and the z-integration, we have 
not derived a closed expression for K valid for general d. 

We are now in a position to apply a variational principle in order to 
determine the form of g(1)(k) corresponding to an extremal value for K. 
Introducing the constraint W= const by means of a Lagrange multiplier 2, 
we vary the form 

F= K-  2W (6.6) 

and require 6F---0 subject to variations of g(1). 
For a 1D signal we obtain 

l ( ~ _ l )  6g("(k ) ) 1  
~ g(l)(k) ~N ~ 6g(1)(k)=O (6.7) 
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Solving for g(1) and eliminating 2 using Eq. (6.2), we obtain in the long- 
wavelength limit k ~ 0, 

2rt W N  1 
g(')(k) - Z p  (2rc/p - 1) k (6.8) 

in accordance with ref. 1. In other words, for a 1D spatial signal, i.e., a 1D 
configuration, the complexity K takes its maximum value in the case of 
correlations behaving as 1/k in wavenumber space. In configuration space 
the correlations fall off as log r, i.e., g a ~ l o g  l i - j l .  For a temporal signal 
we find, correspondingly, g ( ~ ( k ) =  g(~)(o9)~ 1/o9, i.e., 1/f noise. 

For a 2D signal we obtain in a similar manner 

WNZ[(2rc/kl)  20(k~ - k2) + (2rc/k2) 20(k2 - kl) - 1 ] 
g(~)(k~, k2)=~plp2 [(27z/Pl) 20(pl-- /02)+ (2/Z/p2) 20(p2--pl)- 1] (6.9) 

The anisotropic form of g{~)(kl, k2) is due to the choice of coarse-graining 
procedure. In the long-wavelength limit kl,  k2-+0 we find g{~),,, l ike ,  
1/k 2. For a 2D spatial morphology this behavior also corresponds to 
correlations falling off like log r. 

7. S U M M A R Y  A N D  C O N C L U S I O N  

In this paper we have discussed a novel definition of complexity based 
on a phase space approachJ 1) The complexity measure K can in principle 
be evaluated for any kind of signal be it a time series or a higher-dimen- 
sional spatial morphology. The complexity is derived from the probability 
distribution for the signal by expressing K in terms of a graded sum of 
entropies evaluated at different levels of resolution of the signal. 

For a Gaussian signal characterized by a correlation function g(k), 
where k is the wavenumber or frequency, the scale-dependent entropy and 
hence the complexity can be evaluated explicitly. (1~ Introducing a simple 
variational principle, which supplements the derivation in ref. 1 and puts 
the problem within the general context of statistical mechanics methods, (3) 
we show that for signals with constant power, maximal complexity is 
attained for signals which in one dimension have long-range correlations of 
the l / f  type, i.e., a correlation function g(k) ~ 1/k. Note that by maximizing 
alone the entropy subject to the above constraint we obtain a white noise 
behavior, i.e., g (k)~cons t .  For a two-dimensional signal or structure, 
maximum complexity corresponds to spatial correlations decaying 
logarithmically. 

The virtue of the phase space approach (1) is that it applies to any 
signal for which we can define a probability distribution; in this respect the 
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present method differs markedly from other approaches. (6'8'm As far as 
uniqueness is concerned, the present definition has the virtue of yielding a 
complexity which apart from logarithmic corrections is an extensive 
quantity. In this respect the complexity resembles the entropy and enables 
us to define a complexity density. 

In recent years there has been a substantial effort directed toward 
understanding the ubiquitous nature of 1/f noise in driven open 
systems. ~5'16) As emphasized by Zhang, (~) the present definition of 
complexity has the interesting feature of displaying a maximum for a 
one-dimensional Gaussian signal with 1/f noise correlations. Since we still 
have so little understanding of either l / f  noise or the notion of complexity, 
it is difficult to assess the importance of this observation. 

We also wish to comment on the variational principle presented here. 
Variational principles play an important role in physics. For instance, in 
statistical mechanics a variational principle based on the information- 
theoretic definition of entropy (3) allows for the derivation of the statistical 
ensembles and eventually leads to a derivation of thermodynamics; in 
mechanics and field theory the principle of least action, i.e., maximizing the 
action subject to various constraints, implies the equations of motion. 
Drawing the obvious parallel to the present discussion, a useful definition 
and understanding of complexity should allow us to formulate a varia- 
tional principle using K which in a generic sense would give us some 
insight into the mechanism giving rise to maximally complex signals. Here 
we have used a simple variational principle to derive I / f  noise, but it seems 
difficult to go beyond this admittedly rather simple calculation. 

Finally, let us summarize some obvious extensions of the present 
calculation. It clearly would be of interest to extend the derivation in ref. 1 
and the present discussion to signals with a non-Gaussian character. 
Within the scheme of a Ginzburg-Landau formulation, (3) where the 
Gaussian approximation corresponds to the leading term (with arbitrary 
spatial correlations), one might include higher-order terms and apply a 
renormalization-group type calculation in order to evaluate the complexity 
as a function of temperature. It would then be possible to verify the claim (1) 
that the complexity has a maximum at the critical temperature. Another 
line of approach is to consider, for example, the one-dimensional Ising 
model and evaluate the complexity using the transfer matrix method. (3) 
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